fileserver/lib/Botan-3.2.0/doc/api_ref/pkcs11.rst

945 lines
40 KiB
ReStructuredText

.. _pkcs11:
PKCS#11
========================================
.. versionadded:: 1.11.31
|
PKCS#11 is a platform-independent interface for accessing smart cards and
hardware security modules (HSM). Vendors of PKCS#11 compatible devices usually
provide a so called middleware or "PKCS#11 module" which implements the PKCS#11
standard. This middleware translates calls from the platform-independent PKCS#11
API to device specific calls. So application developers don't have to write smart card
or HSM specific code for each device they want to support.
.. note::
The Botan PKCS#11 interface is implemented against version v2.40 of the standard.
Botan wraps the C PKCS#11 API to provide a C++ PKCS#11 interface. This is done
in two levels of abstraction: a low level API (see :ref:`pkcs11_low_level`) and
a high level API (see :ref:`pkcs11_high_level`). The low level API provides
access to all functions that are specified by the standard. The high level API
represents an object oriented approach to use PKCS#11 compatible devices but
only provides a subset of the functions described in the standard.
To use the PKCS#11 implementation the ``pkcs11`` module has to be enabled.
.. note::
Both PKCS#11 APIs live in the namespace ``Botan::PKCS11``
.. _pkcs11_low_level:
Low Level API
----------------------------------------
The PKCS#11 standards committee provides header files (``pkcs11.h``, ``pkcs11f.h`` and
``pkcs11t.h``) which define the PKCS#11 API in the C programming language. These
header files could be used directly to access PKCS#11 compatible smart cards or
HSMs. The external header files are shipped with Botan in version v2.4 of the standard. The PKCS#11 low
level API wraps the original PKCS#11 API, but still allows to access all functions described in the
standard and has the advantage that it is a C++ interface with features like RAII, exceptions
and automatic memory management.
The low level API is implemented by the :cpp:class:`LowLevel` class and can be accessed by
including the header ``botan/p11.h``.
Preface
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All constants that belong together in the PKCS#11 standard are grouped into C++
enum classes. For example the different user types are grouped in the
:cpp:enum:`UserType` enumeration:
.. cpp:enum-class:: UserType : CK_USER_TYPE
.. cpp:enumerator:: UserType::SO = CKU_SO
.. cpp:enumerator:: UserType::User = CKU_USER
.. cpp:enumerator:: UserType::ContextSpecific = CKU_CONTEXT_SPECIFIC
Additionally, all types that are used by the low or high level API are mapped by
type aliases to more C++ like names. For instance:
.. cpp:type:: FunctionListPtr = CK_FUNCTION_LIST_PTR
.. rubric:: C-API Wrapping
There is at least one method in the :cpp:class:`LowLevel` class that corresponds to a PKCS#11
function. For example the :cpp:func:`C_GetSlotList` method in the :cpp:class:`LowLevel` class is defined as follows:
.. cpp:class:: LowLevel
.. cpp:function:: bool C_GetSlotList(Bbool token_present, SlotId* slot_list_ptr, Ulong* count_ptr, ReturnValue* return_value = ThrowException) const
The :cpp:class:`LowLevel` class calls the PKCS#11 function from the function list of the PKCS#11 module:
.. code-block:: c
CK_DEFINE_FUNCTION(CK_RV, C_GetSlotList)( CK_BBOOL tokenPresent, CK_SLOT_ID_PTR pSlotList,
CK_ULONG_PTR pulCount )
Where it makes sense there is also an overload of the :cpp:class:`LowLevel` method to make usage easier and safer:
.. cpp:function:: bool C_GetSlotList( bool token_present, std::vector<SlotId>& slot_ids, ReturnValue* return_value = ThrowException ) const
With this overload the user of this API just has to pass a vector of :cpp:type:`SlotId` instead of pointers
to preallocated memory for the slot list and the number of elements. Additionally, there is no need
to call the method twice in order to determine the number of elements first.
Another example is the :cpp:func:`C_InitPIN` overload:
.. cpp:function:: template<typename Talloc> bool C_InitPIN( SessionHandle session, const std::vector<uint8_t, TAlloc>& pin, ReturnValue* return_value = ThrowException ) const
The templated ``pin`` parameter allows to pass the PIN as a ``std::vector<uint8_t>`` or a ``secure_vector<uint8_t>``.
If used with a ``secure_vector`` it is assured that the memory is securely erased when the ``pin`` object is no longer needed.
Error Handling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All possible PKCS#11 return values are represented by the enum class:
.. cpp:enum-class:: ReturnValue : CK_RV
All methods of the :cpp:class:`LowLevel` class have a default parameter ``ReturnValue* return_value = ThrowException``.
This parameter controls the error handling of all :cpp:class:`LowLevel` methods. The default
behavior ``return_value = ThrowException`` is to throw an exception if the method does
not complete successfully. If a non-``NULL`` pointer is passed, ``return_value`` receives the
return value of the PKCS#11 function and no exception is thrown. In case ``nullptr`` is
passed as ``return_value``, the exact return value is ignored and the method just returns
``true`` if the function succeeds and ``false`` otherwise.
Getting started
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
An object of this class can be accessed by the ``Module::operator->()`` method.
----------
Code Example:
.. literalinclude:: /../src/examples/pkcs11_low_level.cpp
:language: cpp
.. _pkcs11_high_level:
High Level API
----------------------------------------
The high level API provides access to the most commonly used PKCS#11 functionality in an
object oriented manner. Functionality of the high level API includes:
* Loading/unloading of PKCS#11 modules
* Initialization of tokens
* Change of PIN/SO-PIN
* Session management
* Random number generation
* Enumeration of objects on the token (certificates, public keys, private keys)
* Import/export/deletion of certificates
* Generation/import/export/deletion of RSA and EC public and private keys
* Encryption/decryption using RSA with support for OAEP and PKCS1-v1_5 (and raw)
* Signature generation/verification using RSA with support for PSS and PKCS1-v1_5 (and raw)
* Signature generation/verification using ECDSA
* Key derivation using ECDH
Module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :cpp:class:`Module` class represents a PKCS#11 shared library (module) and is defined in
``botan/p11_module.h``.
It is constructed from a a file path to a PKCS#11 module and optional :cpp:type:`C_InitializeArgs`:
.. cpp:class:: Module
.. code-block:: cpp
Module(const std::string& file_path, C_InitializeArgs init_args =
{ nullptr, nullptr, nullptr, nullptr, static_cast<CK_FLAGS>(Flag::OsLockingOk), nullptr })
It loads the shared library and calls :cpp:func:`C_Initialize` with the provided :cpp:type:`C_InitializeArgs`.
On destruction of the object :cpp:func:`C_Finalize` is called.
There are two more methods in this class. One is for reloading the shared library
and reinitializing the PKCS#11 module:
.. code-block:: cpp
void reload(C_InitializeArgs init_args =
{ nullptr, nullptr, nullptr, nullptr, static_cast< CK_FLAGS >(Flag::OsLockingOk), nullptr });
The other one is for getting general information about the PKCS#11 module:
.. cpp:function:: Info get_info() const
This function calls :cpp:func:`C_GetInfo` internally.
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_module.cpp
:language: cpp
Slot
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :cpp:class:`Slot` class represents a PKCS#11 slot and is defined in
``botan/p11_slot.h``.
A PKCS#11 slot is usually a smart card reader that potentially contains a token.
.. cpp:class:: Slot
.. cpp:function:: Slot(Module& module, SlotId slot_id)
To instantiate this class a reference to a :cpp:class:`Module` object and a ``slot_id`` have to be passed
to the constructor.
.. cpp:function:: static std::vector<SlotId> get_available_slots(Module& module, bool token_present)
Retrieve available slot ids by calling this static method.
The parameter ``token_present`` controls whether all slots or only slots with a
token attached are returned by this method. This method calls :cpp:func:`C_GetSlotList()`.
.. cpp:function:: SlotInfo get_slot_info() const
Returns information about the slot. Calls :cpp:func:`C_GetSlotInfo`.
.. cpp:function:: TokenInfo get_token_info() const
Obtains information about a particular token in the system. Calls :cpp:func:`C_GetTokenInfo`.
.. cpp:function:: std::vector<MechanismType> get_mechanism_list() const
Obtains a list of mechanism types supported by the slot. Calls :cpp:func:`C_GetMechanismList`.
.. cpp:function:: MechanismInfo get_mechanism_info(MechanismType mechanism_type) const
Obtains information about a particular mechanism possibly supported by a slot.
Calls :cpp:func:`C_GetMechanismInfo`.
.. cpp:function:: void initialize(const std::string& label, const secure_string& so_pin) const
Calls :cpp:func:`C_InitToken` to initialize the token. The ``label`` must not exceed 32 bytes.
The current PIN of the security officer must be passed in ``so_pin`` if the token
is reinitialized or if it's a factory new token, the ``so_pin`` that is passed will initially be set.
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_slot.cpp
:language: cpp
Session
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :cpp:class:`Session` class represents a PKCS#11 session and is defined in ``botan/p11_session.h``.
A session is a logical connection between an application and a token.
The session is passed to most other PKCS#11 operations, and must remain alive
as long as any other PKCS#11 object which the session was passed to is still
alive, otherwise errors or even an application crash are possible.
In the future,
the API may change to using ``shared_ptr`` to remove this problem.
.. cpp:class:: Session
There are two constructors to create a new session and one constructor to
take ownership of an existing session. The destructor calls
:cpp:func:`C_Logout` if a user is logged in to this session and always
:cpp:func:`C_CloseSession`.
.. cpp:function:: Session(Slot& slot, bool read_only)
To initialize a session object a :cpp:class:`Slot` has to be specified on which the session
should operate. ``read_only`` specifies whether the session should be read only or read write.
Calls :cpp:func:`C_OpenSession`.
.. cpp:function:: Session(Slot& slot, Flags flags, VoidPtr callback_data, Notify notify_callback)
Creates a new session by passing a :cpp:class:`Slot`, session ``flags``, ``callback_data`` and a
``notify_callback``. Calls :cpp:func:`C_OpenSession`.
.. cpp:function:: Session(Slot& slot, SessionHandle handle)
Takes ownership of an existing session by passing :cpp:class:`Slot` and a session ``handle``.
.. cpp:function:: SessionHandle release()
Returns the released :cpp:type:`SessionHandle`
.. cpp:function:: void login(UserType userType, const secure_string& pin)
Login to this session by passing :cpp:enum:`UserType` and ``pin``. Calls :cpp:func:`C_Login`.
.. cpp:function:: void logoff()
Logout from this session. Not mandatory because on destruction of the :cpp:class:`Session` object
this is done automatically.
.. cpp:function:: SessionInfo get_info() const
Returns information about this session. Calls :cpp:func:`C_GetSessionInfo`.
.. cpp:function:: void set_pin(const secure_string& old_pin, const secure_string& new_pin) const
Calls :cpp:func:`C_SetPIN` to change the PIN of the logged in user using the ``old_pin``.
.. cpp:function:: void init_pin(const secure_string& new_pin)
Calls :cpp:func:`C_InitPIN` to change or initialize the PIN using the SO_PIN (requires a logged in session).
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_session.cpp
:language: cpp
Objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PKCS#11 objects consist of various attributes (:c:type:`CK_ATTRIBUTE`). For example :c:macro:`CKA_TOKEN`
describes if a PKCS#11 object is a session object or a token object. The helper class :cpp:class:`AttributeContainer`
helps with storing these attributes. The class is defined in ``botan/p11_object.h``.
.. cpp:class:: AttributeContainer
Attributes can be set in an :cpp:class:`AttributeContainer` by various ``add_`` methods:
.. cpp:function:: void add_class(ObjectClass object_class)
Add a class attribute (:c:macro:`CKA_CLASS` / :cpp:enumerator:`AttributeType::Class`)
.. cpp:function:: void add_string(AttributeType attribute, const std::string& value)
Add a string attribute (e.g. :c:macro:`CKA_LABEL` / :cpp:enumerator:`AttributeType::Label`).
.. cpp:function:: void AttributeContainer::add_binary(AttributeType attribute, const uint8_t* value, size_t length)
Add a binary attribute (e.g. :c:macro:`CKA_ID` / :cpp:enumerator:`AttributeType::Id`).
.. cpp:function:: template<typename TAlloc> void AttributeContainer::add_binary(AttributeType attribute, const std::vector<uint8_t, TAlloc>& binary)
Add a binary attribute by passing a ``vector``/``secure_vector`` (e.g. :c:macro:`CKA_ID` / :cpp:enumerator:`AttributeType::Id`).
.. cpp:function:: void AttributeContainer::add_bool(AttributeType attribute, bool value)
Add a bool attribute (e.g. :c:macro:`CKA_SENSITIVE` / :cpp:enumerator:`AttributeType::Sensitive`).
.. cpp:function:: template<typename T> void AttributeContainer::add_numeric(AttributeType attribute, T value)
Add a numeric attribute (e.g. :c:macro:`CKA_MODULUS_BITS` / :cpp:enumerator:`AttributeType::ModulusBits`).
.. rubric:: Object Properties
The PKCS#11 standard defines the mandatory and optional attributes for each object class.
The mandatory and optional attribute requirements are mapped in so called property classes.
Mandatory attributes are set in the constructor, optional attributes can be set via ``set_`` methods.
In the top hierarchy is the :cpp:class:`ObjectProperties` class which inherits from the :cpp:class:`AttributeContainer`.
This class represents the common attributes of all PKCS#11 objects.
.. cpp:class:: ObjectProperties : public AttributeContainer
The constructor is defined as follows:
.. cpp:function:: ObjectProperties::ObjectProperties(ObjectClass object_class)
Every PKCS#11 object needs an object class attribute.
The next level defines the :cpp:class:`StorageObjectProperties` class which inherits from
:cpp:class:`ObjectProperties`.
.. cpp:class:: StorageObjectProperties : public ObjectProperties
The only mandatory attribute is the object class, so the constructor is
defined as follows:
.. cpp:function:: StorageObjectProperties::StorageObjectProperties(ObjectClass object_class)
But in contrast to the :cpp:class:`ObjectProperties` class there are various setter methods. For example to
set the :cpp:enumerator:`AttributeType::Label`:
.. cpp:function:: void set_label(const std::string& label)
Sets the label description of the object (RFC2279 string).
The remaining hierarchy is defined as follows:
* :cpp:class:`DataObjectProperties` inherits from :cpp:class:`StorageObjectProperties`
* :cpp:class:`CertificateProperties` inherits from :cpp:class:`StorageObjectProperties`
* :cpp:class:`DomainParameterProperties` inherits from :cpp:class:`StorageObjectProperties`
* :cpp:class:`KeyProperties` inherits from :cpp:class:`StorageObjectProperties`
* :cpp:class:`PublicKeyProperties` inherits from :cpp:class:`KeyProperties`
* :cpp:class:`PrivateKeyProperties` inherits from :cpp:class:`KeyProperties`
* :cpp:class:`SecretKeyProperties` inherits from :cpp:class:`KeyProperties`
PKCS#11 objects themselves are represented by the :cpp:class:`Object` class.
.. cpp:class:: Object
Following constructors are defined:
.. cpp:function:: Object::Object(Session& session, ObjectHandle handle)
Takes ownership over an existing object.
.. cpp:function:: Object::Object(Session& session, const ObjectProperties& obj_props)
Creates a new object with the :cpp:class:`ObjectProperties` provided in ``obj_props``.
The other methods are:
.. cpp:function:: secure_vector<uint8_t> get_attribute_value(AttributeType attribute) const
Returns the value of the given attribute (using :cpp:func:`C_GetAttributeValue`)
.. cpp:function:: void set_attribute_value(AttributeType attribute, const secure_vector<uint8_t>& value) const
Sets the given value for the attribute (using :cpp:func:`C_SetAttributeValue`)
.. cpp:function:: void destroy() const
Destroys the object.
.. cpp:function:: ObjectHandle copy(const AttributeContainer& modified_attributes) const
Allows to copy the object with modified attributes.
And static methods to search for objects:
.. cpp:function:: template<typename T> static std::vector<T> search(Session& session, const std::vector<Attribute>& search_template)
Searches for all objects of the given type that match ``search_template``.
.. cpp:function:: template<typename T> static std::vector<T> search(Session& session, const std::string& label)
Searches for all objects of the given type using the label (:c:macro:`CKA_LABEL`).
.. cpp:function:: template<typename T> static std::vector<T> search(Session& session, const std::vector<uint8_t>& id)
Searches for all objects of the given type using the id (:c:macro:`CKA_ID`).
.. cpp:function:: template<typename T> static std::vector<T> search(Session& session, const std::string& label, const std::vector<uint8_t>& id)
Searches for all objects of the given type using the label (:c:macro:`CKA_LABEL`) and id (:c:macro:`CKA_ID`).
.. cpp:function:: template<typename T> static std::vector<T> search(Session& session)
Searches for all objects of the given type.
.. rubric:: The ObjectFinder
Another way for searching objects is to use the :cpp:class:`ObjectFinder` class. This class
manages calls to the ``C_FindObjects*`` functions: :cpp:func:`C_FindObjectsInit`, :cpp:func:`C_FindObjects`
and :cpp:func:`C_FindObjectsFinal`.
.. cpp:class:: ObjectFinder
The constructor has the following signature:
.. cpp:function:: ObjectFinder::ObjectFinder(Session& session, const std::vector<Attribute>& search_template)
A search can be prepared with an :cpp:class:`ObjectSearcher` by passing a :cpp:class:`Session` and a ``search_template``.
The actual search operation is started by calling the :cpp:func:`find` method:
.. cpp:function:: std::vector<ObjectHandle> find(std::uint32_t max_count = 100) const
Starts or continues a search for token and session objects that match a template. ``max_count``
specifies the maximum number of search results (object handles) that are returned.
.. cpp:function:: void finish()
Finishes the search operation manually to allow a new :cpp:class:`ObjectFinder` to exist.
Otherwise the search is finished by the destructor.
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_objects.cpp
:language: cpp
RSA
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PKCS#11 RSA support is implemented in ``<botan/p11_rsa.h>``.
.. rubric:: RSA Public Keys
PKCS#11 RSA public keys are provided by the class :cpp:class:`PKCS11_RSA_PublicKey`. This class
inherits from :cpp:class:`RSA_PublicKey` and :cpp:class:`Object`. Furthermore there are two property classes defined
to generate and import RSA public keys analogous to the other property classes described
before: :cpp:class:`RSA_PublicKeyGenerationProperties` and :cpp:class:`RSA_PublicKeyImportProperties`.
.. cpp:class:: PKCS11_RSA_PublicKey : public RSA_PublicKey, public Object
.. cpp:function:: PKCS11_RSA_PublicKey(Session& session, ObjectHandle handle)
Existing PKCS#11 RSA public keys can be used by providing an :cpp:type:`ObjectHandle` to the
constructor.
.. cpp:function:: PKCS11_RSA_PublicKey(Session& session, const RSA_PublicKeyImportProperties& pubkey_props)
This constructor can be used to import an existing RSA public key with the :cpp:class:`RSA_PublicKeyImportProperties`
passed in ``pubkey_props`` to the token.
.. rubric:: RSA Private Keys
The support for PKCS#11 RSA private keys is implemented in a similar way. There are two property
classes: :cpp:class:`RSA_PrivateKeyGenerationProperties` and :cpp:class:`RSA_PrivateKeyImportProperties`. The :cpp:class:`PKCS11_RSA_PrivateKey`
class implements the actual support for PKCS#11 RSA private keys. This class inherits from :cpp:class:`Private_Key`,
:cpp:class:`RSA_PublicKey` and :cpp:class:`Object`. In contrast to the public key class there is a third constructor
to generate private keys directly on the token or in the session and one method to export private keys.
.. cpp:class:: PKCS11_RSA_PrivateKey : public Private_Key, public RSA_PublicKey, public Object
.. cpp:function:: PKCS11_RSA_PrivateKey(Session& session, ObjectHandle handle)
Existing PKCS#11 RSA private keys can be used by providing an :cpp:type:`ObjectHandle` to the
constructor.
.. cpp:function:: PKCS11_RSA_PrivateKey(Session& session, const RSA_PrivateKeyImportProperties& priv_key_props)
This constructor can be used to import an existing RSA private key with the :cpp:class:`RSA_PrivateKeyImportProperties`
passed in ``priv_key_props`` to the token.
.. cpp:function:: PKCS11_RSA_PrivateKey(Session& session, uint32_t bits, const RSA_PrivateKeyGenerationProperties& priv_key_props)
Generates a new PKCS#11 RSA private key with bit length provided in ``bits`` and the :cpp:class:`RSA_PrivateKeyGenerationProperties`
passed in ``priv_key_props``.
.. cpp:function:: RSA_PrivateKey export_key() const
Returns the exported :cpp:class:`RSA_PrivateKey`.
PKCS#11 RSA key pairs can be generated with the following free function:
.. cpp:function:: PKCS11_RSA_KeyPair PKCS11::generate_rsa_keypair(Session& session, const RSA_PublicKeyGenerationProperties& pub_props, const RSA_PrivateKeyGenerationProperties& priv_props)
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_rsa.cpp
:language: cpp
ECDSA
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PKCS#11 ECDSA support is implemented in ``<botan/p11_ecdsa.h>``.
.. rubric:: ECDSA Public Keys
PKCS#11 ECDSA public keys are provided by the class :cpp:class:`PKCS11_ECDSA_PublicKey`. This class
inherits from :cpp:class:`PKCS11_EC_PublicKey` and :cpp:class:`ECDSA_PublicKey`. The necessary property classes
are defined in ``<botan/p11_ecc_key.h>``. For public keys there are :cpp:class:`EC_PublicKeyGenerationProperties`
and :cpp:class:`EC_PublicKeyImportProperties`.
.. cpp:class:: PKCS11_ECDSA_PublicKey : public PKCS11_EC_PublicKey, public virtual ECDSA_PublicKey
.. cpp:function:: PKCS11_ECDSA_PublicKey(Session& session, ObjectHandle handle)
Existing PKCS#11 ECDSA private keys can be used by providing an :cpp:type:`ObjectHandle` to the
constructor.
.. cpp:function:: PKCS11_ECDSA_PublicKey(Session& session, const EC_PublicKeyImportProperties& props)
This constructor can be used to import an existing ECDSA public key with the :cpp:class:`EC_PublicKeyImportProperties`
passed in ``props`` to the token.
.. cpp:function:: ECDSA_PublicKey PKCS11_ECDSA_PublicKey::export_key() const
Returns the exported :cpp:class:`ECDSA_PublicKey`.
.. rubric:: ECDSA Private Keys
The class :cpp:class:`PKCS11_ECDSA_PrivateKey` inherits from :cpp:class:`PKCS11_EC_PrivateKey` and implements support
for PKCS#11 ECDSA private keys. There are two property classes for key generation
and import: :cpp:class:`EC_PrivateKeyGenerationProperties` and :cpp:class:`EC_PrivateKeyImportProperties`.
.. cpp:class:: PKCS11_ECDSA_PrivateKey : public PKCS11_EC_PrivateKey
.. cpp:function:: PKCS11_ECDSA_PrivateKey(Session& session, ObjectHandle handle)
Existing PKCS#11 ECDSA private keys can be used by providing an :cpp:type:`ObjectHandle` to the
constructor.
.. cpp:function:: PKCS11_ECDSA_PrivateKey(Session& session, const EC_PrivateKeyImportProperties& props)
This constructor can be used to import an existing ECDSA private key with the :cpp:class:`EC_PrivateKeyImportProperties`
passed in ``props`` to the token.
.. cpp:function:: PKCS11_ECDSA_PrivateKey(Session& session, const std::vector<uint8_t>& ec_params, const EC_PrivateKeyGenerationProperties& props)
This constructor can be used to generate a new ECDSA private key with the :cpp:class:`EC_PrivateKeyGenerationProperties`
passed in ``props`` on the token. The ``ec_params`` parameter is the DER-encoding of an
ANSI X9.62 Parameters value.
.. cpp:function:: ECDSA_PrivateKey export_key() const
Returns the exported :cpp:class:`ECDSA_PrivateKey`.
PKCS#11 ECDSA key pairs can be generated with the following free function:
.. cpp:function:: PKCS11_ECDSA_KeyPair PKCS11::generate_ecdsa_keypair(Session& session, const EC_PublicKeyGenerationProperties& pub_props, const EC_PrivateKeyGenerationProperties& priv_props)
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_ecdsa.cpp
:language: cpp
ECDH
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PKCS#11 ECDH support is implemented in ``<botan/p11_ecdh.h>``.
.. rubric:: ECDH Public Keys
PKCS#11 ECDH public keys are provided by the class :cpp:class:`PKCS11_ECDH_PublicKey`. This class
inherits from :cpp:class:`PKCS11_EC_PublicKey`. The necessary property classes
are defined in ``<botan/p11_ecc_key.h>``. For public keys there are :cpp:class:`EC_PublicKeyGenerationProperties`
and :cpp:class:`EC_PublicKeyImportProperties`.
.. cpp:class:: PKCS11_ECDH_PublicKey : public PKCS11_EC_PublicKey
.. cpp:function:: PKCS11_ECDH_PublicKey(Session& session, ObjectHandle handle)
Existing PKCS#11 ECDH private keys can be used by providing an :cpp:type:`ObjectHandle` to the
constructor.
.. cpp:function:: PKCS11_ECDH_PublicKey(Session& session, const EC_PublicKeyImportProperties& props)
This constructor can be used to import an existing ECDH public key with the :cpp:class:`EC_PublicKeyImportProperties`
passed in ``props`` to the token.
.. cpp:function:: ECDH_PublicKey export_key() const
Returns the exported :cpp:class:`ECDH_PublicKey`.
.. rubric:: ECDH Private Keys
The class :cpp:class:`PKCS11_ECDH_PrivateKey` inherits from :cpp:class:`PKCS11_EC_PrivateKey` and :cpp:class:`PK_Key_Agreement_Key`
and implements support for PKCS#11 ECDH private keys. There are two
property classes. One for key generation and one for import: :cpp:class:`EC_PrivateKeyGenerationProperties` and
:cpp:class:`EC_PrivateKeyImportProperties`.
.. cpp:class:: PKCS11_ECDH_PrivateKey : public virtual PKCS11_EC_PrivateKey, public virtual PK_Key_Agreement_Key
.. cpp:function:: PKCS11_ECDH_PrivateKey(Session& session, ObjectHandle handle)
Existing PKCS#11 ECDH private keys can be used by providing an :cpp:type:`ObjectHandle` to the
constructor.
.. cpp:function:: PKCS11_ECDH_PrivateKey(Session& session, const EC_PrivateKeyImportProperties& props)
This constructor can be used to import an existing ECDH private key with the :cpp:class:`EC_PrivateKeyImportProperties`
passed in ``props`` to the token.
.. cpp:function:: PKCS11_ECDH_PrivateKey(Session& session, const std::vector<uint8_t>& ec_params, const EC_PrivateKeyGenerationProperties& props)
This constructor can be used to generate a new ECDH private key with the :cpp:class:`EC_PrivateKeyGenerationProperties`
passed in ``props`` on the token. The ``ec_params`` parameter is the DER-encoding of an
ANSI X9.62 Parameters value.
.. cpp:function:: ECDH_PrivateKey export_key() const
Returns the exported :cpp:class:`ECDH_PrivateKey`.
PKCS#11 ECDH key pairs can be generated with the following free function:
.. cpp:function:: PKCS11_ECDH_KeyPair PKCS11::generate_ecdh_keypair(Session& session, const EC_PublicKeyGenerationProperties& pub_props, const EC_PrivateKeyGenerationProperties& priv_props)
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_ecdh.cpp
:language: cpp
RNG
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PKCS#11 RNG is defined in ``<botan/p11_randomgenerator.h>``. The class :cpp:class:`PKCS11_RNG`
implements the :cpp:class:`Hardware_RNG` interface.
.. cpp:class:: PKCS11_RNG : public Hardware_RNG
.. cpp:function:: PKCS11_RNG(Session& session)
A PKCS#11 :cpp:class:`Session` must be passed to instantiate a ``PKCS11_RNG``.
.. cpp:function:: void randomize(uint8_t output[], std::size_t length) override
Calls :cpp:func:`C_GenerateRandom` to generate random data.
.. cpp:function:: void add_entropy(const uint8_t in[], std::size_t length) override
Calls :cpp:func:`C_SeedRandom` to add entropy to the random generation function of the token/middleware.
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_rng.cpp
:language: cpp
Token Management Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The header file ``<botan/p11.h>`` also defines some free functions for token management:
.. cpp:function:: void initialize_token(Slot& slot, const std::string& label, const secure_string& so_pin, const secure_string& pin)
Initializes a token by passing a :cpp:class:`Slot`, a ``label`` and the ``so_pin`` of the security officer.
.. cpp:function:: void change_pin(Slot& slot, const secure_string& old_pin, const secure_string& new_pin)
Change PIN with ``old_pin`` to ``new_pin``.
.. cpp:function:: void change_so_pin(Slot& slot, const secure_string& old_so_pin, const secure_string& new_so_pin)
Change SO_PIN with ``old_so_pin`` to new ``new_so_pin``.
.. cpp:function:: void set_pin(Slot& slot, const secure_string& so_pin, const secure_string& pin)
Sets user ``pin`` with ``so_pin``.
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_token_management.cpp
:language: cpp
X.509
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The header file ``<botan/p11_x509.h>`` defines the property class :cpp:class:`X509_CertificateProperties`
and the class :cpp:class:`PKCS11_X509_Certificate`.
.. cpp:class:: PKCS11_X509_Certificate : public Object, public X509_Certificate
.. cpp:function:: PKCS11_X509_Certificate(Session& session, ObjectHandle handle)
Allows to use existing certificates on the token by passing a valid :cpp:type:`ObjectHandle`.
.. cpp:function:: PKCS11_X509_Certificate(Session& session, const X509_CertificateProperties& props)
Allows to import an existing X.509 certificate to the token with the :cpp:class:`X509_CertificateProperties`
passed in ``props``.
----------
Code example:
.. literalinclude:: /../src/examples/pkcs11_x509.cpp
:language: cpp
Tests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PKCS#11 tests are not executed automatically because the depend on an external
PKCS#11 module/middleware. The test tool has to be executed with ``--pkcs11-lib=``
followed with the path of the PKCS#11 module and a second argument which controls the
PKCS#11 tests that are executed. Passing ``pkcs11`` will execute all PKCS#11 tests but it's
also possible to execute only a subset with the following arguments:
- pkcs11-ecdh
- pkcs11-ecdsa
- pkcs11-lowlevel
- pkcs11-manage
- pkcs11-module
- pkcs11-object
- pkcs11-rng
- pkcs11-rsa
- pkcs11-session
- pkcs11-slot
- pkcs11-x509
The following PIN and SO-PIN/PUK values are used in tests:
- PIN 123456
- SO-PIN/PUK 12345678
.. warning::
Unlike the CardOS (4.4, 5.0, 5.3), the aforementioned SO-PIN/PUK is
inappropriate for Gemalto (IDPrime MD 3840) cards, as it must be a byte array
of length 24. For this reason some of the tests for Gemalto card involving
SO-PIN will fail. You run into a risk of exceding login attempts and as a
result locking your card! Currently, specifying pin via command-line option
is not implemented, and therefore the desired PIN must be modified in the
header src/tests/test_pkcs11.h:
.. code-block:: cpp
// SO PIN is expected to be set to "12345678" prior to running the tests
const std::string SO_PIN = "12345678";
const auto SO_PIN_SECVEC = Botan::PKCS11::secure_string(SO_PIN.begin(), SO_PIN.end());
Tested/Supported Smartcards
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You are very welcome to contribute your own test results for other testing environments or other cards.
Test results
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
| Smartcard | Status | OS | Midleware | Botan | Errors |
+=====================================+===========================================+===================================================+===================================================+===================================================+===================================================+
| CardOS 4.4 | mostly works | Windows 10, 64-bit, version 1709 | API Version 5.4.9.77 (Cryptoki v2.11) | 2.4.0, Cryptoki v2.40 | [50]_ |
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
| CardOS 5.0 | mostly works | Windows 10, 64-bit, version 1709 | API Version 5.4.9.77 (Cryptoki v2.11) | 2.4.0, Cryptoki v2.40 | [51]_ |
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
| CardOS 5.3 | mostly works | Windows 10, 64-bit, version 1709 | API Version 5.4.9.77 (Cryptoki v2.11) | 2.4.0, Cryptoki v2.40 | [52]_ |
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
| CardOS 5.3 | mostly works | Windows 10, 64-bit, version 1903 | API Version 5.5.1 (Cryptoki v2.11) | 2.12.0 unreleased, Cryptoki v2.40 | [53]_ |
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
| Gemalto IDPrime MD 3840 | mostly works | Windows 10, 64-bit, version 1709 | IDGo 800, v1.2.4 (Cryptoki v2.20) | 2.4.0, Cryptoki v2.40 | [54]_ |
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
| SoftHSM 2.3.0 (OpenSSL 1.0.2g) | works | Windows 10, 64-bit, version 1709 | Cryptoki v2.40 | 2.4.0, Cryptoki v2.40 | |
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
| SoftHSM 2.5.0 (OpenSSL 1.1.1) | works | Windows 10, 64-bit, version 1803 | Cryptoki v2.40 | 2.11.0, Cryptoki v2.40 | |
+-------------------------------------+-------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+---------------------------------------------------+
.. [50] Failing operations for CardOS 4.4:
- object_copy [20]_
- rsa_privkey_export [21]_
- rsa_generate_private_key [22]_
- rsa_sign_verify [23]_
- ecdh_privkey_import [3]_
- ecdh_privkey_export [2]_
- ecdh_pubkey_import [4]_
- ecdh_pubkey_export [4]_
- ecdh_generate_private_key [3]_
- ecdh_generate_keypair [3]_
- ecdh_derive [3]_
- ecdsa_privkey_import [3]_
- ecdsa_privkey_export [2]_
- ecdsa_pubkey_import [4]_
- ecdsa_pubkey_export [4]_
- ecdsa_generate_private_key [3]_
- ecdsa_generate_keypair [3]_
- ecdsa_sign_verify [3]_
- rng_add_entropy [5]_
.. [51] Failing operations for CardOS 5.0
- object_copy [20]_
- rsa_privkey_export [21]_
- rsa_generate_private_key [22]_
- rsa_sign_verify [23]_
- ecdh_privkey_export [2]_
- ecdh_pubkey_import [4]_
- ecdh_generate_private_key [32]_
- ecdh_generate_keypair [3]_
- ecdh_derive [33]_
- ecdsa_privkey_export [2]_
- ecdsa_generate_private_key [30]_
- ecdsa_generate_keypair [30]_
- ecdsa_sign_verify [30]_
- rng_add_entropy [5]_
.. [52] Failing operations for CardOS 5.3
- object_copy [20]_
- rsa_privkey_export [21]_
- rsa_generate_private_key [22]_
- rsa_sign_verify [23]_
- ecdh_privkey_export [2]_
- ecdh_pubkey_import [6]_
- ecdh_pubkey_export [6]_
- ecdh_generate_private_key [30]_
- ecdh_generate_keypair [31]_
- ecdh_derive [30]_
- ecdsa_privkey_export [2]_
- ecdsa_pubkey_import [6]_
- ecdsa_pubkey_export [6]_
- ecdsa_generate_private_key [31]_
- ecdsa_generate_keypair [31]_
- ecdsa_sign_verify [34]_
- rng_add_entropy [5]_
.. [53] Failing operations for CardOS 5.3 (middelware 5.5.1)
- ecdh_privkey_export [2]_
- ecdh_generate_private_key [35]_
- ecdsa_privkey_export [2]_
- ecdsa_generate_private_key [36]_
- c_copy_object [4]_
- object_copy [4]_
- rng_add_entropy [5]_
- rsa_sign_verify [3]_
- rsa_privkey_export [2]_
- rsa_generate_private_key [9]_
.. [54] Failing operations for Gemalto IDPrime MD 3840
- session_login_logout [2]_
- session_info [2]_
- set_pin [2]_
- initialize [2]_
- change_so_pin [2]_
- object_copy [20]_
- rsa_generate_private_key [7]_
- rsa_encrypt_decrypt [8]_
- rsa_sign_verify [2]_
- rng_add_entropy [5]_
Error descriptions
.. [2] CKR_ARGUMENTS_BAD (0x7=7)
.. [3] CKR_MECHANISM_INVALID (0x70=112)
.. [4] CKR_FUNCTION_NOT_SUPPORTED (0x54=84)
.. [5] CKR_RANDOM_SEED_NOT_SUPPORTED (0x120=288)
.. [6] CKM_X9_42_DH_KEY_PAIR_GEN | CKR_DEVICE_ERROR (0x30=48)
.. [7] CKR_TEMPLATE_INCONSISTENT (0xD1=209)
.. [8] CKR_ENCRYPTED_DATA_INVALID | CKM_SHA256_RSA_PKCS (0x40=64)
.. [9] CKR_TEMPLATE_INCOMPLETE (0xD0=208)
.. [20] Test fails due to unsupported copy function (CKR_FUNCTION_NOT_SUPPORTED)
.. [21] Generating private key for extraction with property extractable fails (CKR_ARGUMENTS_BAD)
.. [22] Generate rsa private key operation fails (CKR_TEMPLATE_INCOMPLETE)
.. [23] Raw RSA sign-verify fails (CKR_MECHANISM_INVALID)
.. [30] Invalid argument Decoding error: BER: Value truncated
.. [31] Invalid argument Decoding error: BER: Length field is to large
.. [32] Invalid argument OS2ECP: Unknown format type 155
.. [33] Invalid argument OS2ECP: Unknown format type 92
.. [34] Invalid argument OS2ECP: Unknown format type 57
.. [35] Invalid argument OS2ECP: Unknown format type 82
.. [36] Invalid argument OS2ECP: Unknown format type 102